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Abstract 
 

The Western States Endurance Run is America’s oldest and most prestegious 100-mile trail 
ultramarathon.  But long before runners can conquer 100 miles of mountains, canyons and river 
crossings, they must first conquer the “2^(n-1)” lottery system used to select just 270 lucky entrants to 
toe the starting line in Squaw Valley.  This paper provides a quantitative analysis of several key features 
of this lottery system.  First, we will examine the simulation methods used by the race organizers to 
predict selection odds for each entrant prior to the drawing.  The following section will demonstrate a new 
algorithm to directly compute the odds of selection without resorting to simulations.  In addition to being 
significantly faster and more accurate than the existing methodology, this new method provides the 
framework for much of the analysis in subsequent sections, starting with a look at the likelihood of drawing 
duplicate tickets as the lottery progresses through all 270 rounds.  We again provide an algorithm to 
directly compute the expected frequency of duplicates without the need of simulation.  Following this, we 
propose a model for quantifying the collective surprise and disappointment felt by lottery participants after 
the drawing and show how simple changes in the lottery structure can alter the aggregate happiness of 
the participants as a whole.  Our final section forecasts future growth in the Western States lottery pool 
and examines the impact of this growth on the expected waiting time of new applicants.  An appendix 
provides complete R code for the algorithms described in the paper. 
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1. Introduction 
 
The Race1 
 
The Western States Endurance Run (“Western States”) is a 100-mile running race held each June in 
California.  The race’s history begins with the Tevis Cup, a 100-mile equestrian endurance ride along 
the Western States Trail from Tahoe City to Auburn.  In 1974, Gordy Ainsleigh, a Tevis Cup rider, 
decided to attempt the course on foot.  Twenty three hours and forty-two minutes later, Gordy arrived in 
Auburn and proved that 100 miles on foot in one day was possible. 
 
In 1977, the Western States Endurance Run was born, run in conjunction with the Tevis Cup.  Runners 
were monitored at three veterinary stations set up to serve the horses.  In 1978, Western States split 
into a separate event, run a month earlier than the Tevis Cup.  In the ensuing decades, the race has 
grown and matured into one of the most competitive and prestigious running races in the world. 
 
The Western States course ascends over 18,000 feet and descends nearly 23,000 feet as it winds 
through the Sierras, traversing several steep canyons and fording the American River along the way.  
Runners finish on the track of Placer High School in Auburn and those finishing in fewer than 24 hours 
receive the coveted silver belt buckle.  The current course record for men stands just under 15 hours 
and for women just under 17 hours.    
 

 
 

Image 1: Course profile of Western States Endurance Run (run right to left) 
 
The Lottery2 
 
Given the single-track nature of the course and the delicate surrounding environment, race capacity is 
strictly limited to about 380 runners each year.  Since 1981, the race organizers have utilized a lottery 
system to select runners to participate in the race.  While the mechanics of the lottery have evolved 
over the years, the race organizers have utilized a “2^(n-1)” system since the 2015 drawing3.  Under 

                                                   
1 For a more detailed history of Western States, see http://www.wser.org/how-it-all-began/ 
2 For more details on the mechanics of the lottery, see http://www.wser.org/lottery/ 
3 That’s 2 to the power of n-1. 

http://www.wser.org/how-it-all-began/
http://www.wser.org/lottery/
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this system, each runner who enters the lottery and fails to gain entry will have double the number of 
tickets in the hat when entering the lottery the following year.  In other words, first year applicants will 
have one ticket, second year applicants will have two tickets, third year applicants will have four tickets, 
and so on. 
 
In order to apply for the lottery, runners must complete a qualifying race during the preceding 12 
months.  The list of qualifying races has changed over time, but currently consists of 83 races between 
100 kilometers and 135 miles, with the majority being 100-mile trail races. 
 
270 of the 380 race entries are determined via lottery.  (The remaining 110 entries are various types of 
automatic qualifiers.)  Prior to the drawing, the race organizers publicly post the ticket counts for all 
applicants in the lottery.  They also post estimated odds of selection for runners with a given number of 
tickets (shown in Table 1).  The drawing is then held before a live audience and streamed in real time 
online. 
 

 
 

Image 2: The silver belt buckle awarded to finishers under 24 hours 
 
Of particular relevance to Section 4, it should be noted that the lottery is conducted the “old fashioned” 
way: namely, thousands of slips of paper in an urn with a human drawing one slip at a time.  Another 
important feature of the lottery is that no applicant can be awarded more than one entry into the race.  
Therefore, once a particular name is drawn, the remainder of their tickets in the urn are effectively 
“dead”.  (It is not practical to search the urn and remove these “dead” tickets after each round.)  For 
example, if a seventh-year applicant is selected with the first drawing, one ticket is removed from the 
urn but that entrant’s 63 other tickets remain.  Should one of these “dead” tickets get drawn in a 
subsequent round, the ticket is simply discarded and the round continues until a valid applicant is 
drawn. 
 

2. How Many Simulations Are Needed? 
 
For runners hoping to gain entry into Western States via the lottery, the natural question to ask is: what 
are my chances of being selected?  Prior to the actual drawing, the race organizers attempt to estimate 
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these odds for each category of runner.  They do this by using a Monte Carlo simulation4 using 100,000 
trials.  This section will examine if this an adequate number of simulations in order to achieve an 
acceptable level of accuracy. 
 
Monte Carlo Simulation 
 
Once we know the number of applicants in each category (and therefore the number of tickets for each 
applicant) we can attempt to quantify the odds of selection of each runner.  In particular, there is some 
“true” distribution describing the likelihood of all possible lottery outcomes.  The mean of this distribution 
is what we seek to compute.  However, calculating this “true” distribution is exceedingly complex due to 
the vast number of possible outcomes.  (Below, we will see just how many outcomes are possible.) 
 
Using Monte Carlo simulation, the race organizers can estimate this “true” distribution.  In particular, 
using a computer, a set of 100,000 randomly lottery outcomes was computed.  The observed 
distribution of these outcomes is then used as a proxy for the “true” distribution of outcomes.  Provided 
enough simulations are run, statistics describing this proxy distribution will closely approximate those of 
the “true” underlying set.5 
 

 
 

Chart 1: Simulated distributions by applicant category using 100,000 simulations 
 

                                                   
4 From Wikipedia: Monte Carlo methods are “a broad class of computational algorithms that rely on repeated 
random sampling to obtain numerical results. They are often used in physical and mathematical problems and are 
most useful when it is difficult or impossible to use other mathematical methods.” 
5 By the law of large numbers, the expected value of a random variable can be approximated by taking the 
empirical mean (i.e. the sample mean) of independent samples of the variable. 
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Chart 1 shows histograms of the number of applicants selected in each category across a simulation of 
100,000 lottery outcomes.  (Note that these will vary slightly from the outcomes observed by the race 
organizers in their simulation since the outcomes are randomly generated.)  Looking at the first 
distribution, we can see that, on average, somewhere around 80 first-year applicants were selected.  
We observed very few outcomes where fewer than 60 or more than 100 first-year applicants were 
selected.  On the other hand, for the seventh-year applicants, the most frequently-observed outcome 
was that all 5 applicants were selected.  We saw almost no cases where fewer than 3 were selected. 
 
Using empirical distributions like those above, the race organizers compute the odds of selection for 
runners in each category.  Prior to the actual drawing, these odds are posted on the race website for 
inspection.  Table 1 shows this output for the 2016 drawing. 
 

 
 

Table 1: Monte Carlo Summary Statistics for 2016 Drawing 
 
While these statistics look reasonable at first glance, one may wonder: are 100,000 simulations enough 
to accurately describe the true distribution of outcomes?  Are those odds really accurate to three 
decimal places? 
 
Total Number of Lottery Outcomes 
 
In order to determine if 100,000 is a sufficient number of simulations, let’s get a handle on the number 
of possible lottery outcomes.  After all, if this number is sufficiently small, we could simply enumerate 
them all and directly compute the precise odds without resorting to Monte Carlo simulation at all.   
 
First, we will compute the number of outcomes where we distinguish between runners.  There are 
3,510 applicants and 270 slots available.  Thus, the total number of distinct outcomes is: 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠 =  (
3510

270
) =  

3510!

3240! 270!
= 
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This number has 412 decimal digits.  Clearly, in comparison to the total number of possible outcomes, 
100,000 simulations seem wholly inadequate.  There are trillions upon trillions of outcomes that our 
simulation simply did not observe.  However, this is overstating the situation.  Since all applicants in a 
particular category have the same odds of selection, we need not differentiate between individual 
applicants, only between different categories of applicant. 
 
Number of Distinct Lottery Outcomes 
 
We’ll compute the total number of distinct lottery outcomes where we do not distinguish between 
outcomes that share the same number of runners from each category.  For example, we will count only 
one outcome in which all 270 entries are awarded to first-year applicants, even though there are about 

10356 different ways to choose 270 different first-year applicants. 
 
It turns out there are exactly 12,705,435,449 such outcomes.  (Appendix A contains the details of this 
calculation.)  Thus, if one were to attempt to compute the “true” distribution of outcomes, one would 
have to consider nearly 13 billion cases.  Furthermore, not all of these cases are equally probable, and 
in fact some are quite rare.  (We will see in Section 4 several important but exceedingly rare cases.)  
Thus, even running 13 billion simulations will not reveal the “true” underlying distribution of outcomes. 
 
In light of these results it would seem that 100,000 is far too few simulations to fully describe the 
complete distribution of possible outcomes.  While that is certainly true, we’ll see in the next section that 
if we relax our requirement of complete precision and require only a given level of precision (say one 
decimal place) far fewer simulations are required. 
 
Accuracy of 100,000 Simulations 
 
How good of an estimate does 100,000 simulations provide?  We can use the Central Limit Theorem to 
help answer this question.  Roughly speaking, this theorem says that as the number of simulations 
increases, the distribution of observed means behaves like a normal distribution with the variance 
shrinking in proportion to the number of simulations run.  For example, consider the distribution of first-
year applicants selected.  Let (𝑋1, 𝑋2, … , 𝑋𝑛) be 𝑛 random samples from the “true” underlying 

distribution.  Let 𝑀𝑛 be the sample mean.  In other words, 
 

𝑀𝑛 =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 

 

Suppose the underlying distribution has mean 𝜇 and standard deviation 𝜎.  Then the Central Limit 
Theorem tells us that as 𝑛 grows large, 𝑀𝑛 converges to a normal distribution with mean 𝜇 and 

standard deviation 𝜎/√𝑛.  In other words, as 𝑛 → ∞, 
 

𝑀𝑛  
𝑑
→   𝑁 (𝜇,

𝜎

√𝑛
) 
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Using this tool, we can then use standard properties of the normal distribution to inform us about the 

expected behavior of 𝑀𝑛 as 𝑛 increases.  For example, we know that about 95% of the normal 
distribution lies within 2 standard deviations of the mean.  Thus, taking 𝑛 = 100,000 we can compute 
the width of the 95% confidence interval for each category of applicant. 
 
Consider the distribution of fifth-year applicants selected.  This distribution has a mean of 44.931% and 
standard deviation of 5.659%.  Thus, the standard deviation of 𝑀𝑛 for this category is 
 

0.05659

√100,000
≈ 0.018% 

 
Thus, we can be 95% confident that the odds we computed using 100,000 simulations is within 0.036% 
of the “true” odds. 
 

Category Entrants Mean 𝝁 
Standard 

Deviation 𝝈 

# Trials for 
0.001% 

Accuracy 

Accuracy of 
100,000 
Trials 

1 2,233 3.656% 0.319% 1,627,532 ± 0.002% 

2 639 7.179% 0.917% 13,455,668 ± 0.006% 

3 377 13.845% 1.592% 40,555,093 ± 0.010% 

4 171 25.779% 3.093% 153,020,309 ± 0.020% 

5 71 44.931% 5.674% 515,169,511 ± 0.036% 

6 14 69.714% 12.232% 2,393,924,927 ± 0.077% 

7 5 90.876% 12.942% 2,680,130,532 ± 0.082% 

 
Table 2: Number of simulations needed to achieve a given level of accuracy 

 
The final column in Table 2 shows the output of this calculation for each category6.  We can see that 
the first-year applicant pool has the lowest standard deviation and therefore has the tightest confidence 
interval after 100,000 simulations.  Conversely, the seventh-year applicant pool had the highest 
standard deviation and therefore has a confidence interval about 40 times wider than that of the first-
year applicants. 
 
We can also compute the number of trials required in order to achieve a given level of accuracy (with a 
particular level of confidence).  The race organizers report the selection odds to three decimal places.  
Thus, we will compute the number of simulations needed to be 95% confident that we are within 
0.0005% of the true odds (and thus accurately round to three decimal places). 
 
Again, consider the fifth-year applicant pool.  With 𝜎 = 5.674%, we seek to solve for 𝑛 such that two 

standard deviations of 𝑀𝑛 is 0.0005%: 
 

5.674%

√𝑛
=

0.0005%

2
⇒ 𝑛 = 515,169,511 

 

                                                   
6 This analysis is not fully rigorous since the mean and standard deviation themselves were estimated using 
100,000 simulations.  In order to properly use the Central Limit Theorem, one needs the “true” underlying mean 𝜇 
and standard deviation 𝜎.  In Section 3 we will compute the precise mean, but computing the precise standard 
deviation is much more difficult. 
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Thus, we see that if we run about 515 million simulations, we can be 95% sure that the odds we 
observe will be within 0.0005% of the true odds (and thus will accurately round to three decimal 
places).  Clearly, 100,000 simulations falls far short of this threshold.  
 
On the other hand, looking again at the final column of Table 2 reveals that we are within 0.082% in all 
categories after only 100,000 simulations.  Thus, reporting odds to just one decimal place is fully 
justified. 
 
Chart 2 shows the evolution of 𝑀𝑛 for the first-year and fourth-year applicant pools as 𝑛 increases from 
1 to 100,000.  The light-grey horizontal band indicates one decimal place of precision around the “true” 
mean.  The thinner, dark-grey band indicates two decimal places of precision.  We can see that for the 
first-year applicants, the estimated odds are almost immediately within one decimal place of precision.  
Furthermore, the odds stay within two decimal places after just about 10,000 simulations.  On the other 
hand, for the forth-year applicant pool, we can see that the estimated odds have not achieved two 
decimal places of precision by the 100,000th simulation. 
 

 
 

 
 

Chart 2: Estimated number of applicants selected as trial size increases 
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Actual Drawing 
 
Using Monte Carlo simulation, we have been able to confidently compute the expected number of 
applicants selected from each category. On December 5th, 2015, the actual drawing took place in 
Auburn, California.  We can therefore compare the realized results with the predicted results and 
quantify how “unusual” the actual results were. 
 
To do this, we will compute the Mahalanobis distance7 between the observed outcome and the 
expected outcome.  We can consider each of our 100,000 trials as a point in 7-dimensional space, 
where the coordinates of each point are the number of applicants selected from each of the seven 
categories.  We can picture these points as forming some sort of cluster.  The Mahalanobis distance 
measures the distance from a given point (in our case the realized outcome) to the center of this 
cluster.  However, unlike a standard Euclidean distance measure, the Mahalanobis distance 
incorporates correlations between variables. 
 

More formally, let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇 be the actual lottery outcome and let 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑁)𝑇 be the 

mean lottery outcome.  Further, let 𝑆 be the covariance matrix of our observations.  Then the 
Mahalanobis distance 𝐷𝑀 is defined by 
 

𝐷𝑀 = √(𝑥 − 𝜇)
𝑇

𝑆−1 (𝑥 − 𝜇) 

 
In the case of the 2016 lottery, Table 3 shows the realized results. 
 

 
 

Table 3: Actual results of 2016 drawing 
 
Thus, setting 𝑥 = (82, 49, 53, 38, 32, 12, 4) and using 𝜇 and 𝑆 computed empirically from our set of 

100,000 simulations, we get 𝐷𝑀 = 3.32.  In other words, the realized results differ from the predicted 
results by 3.32 people.  Relative to the total number of applicants selected (270), we actually landed 
quite close to the average. 
 
In fact, with a Mahalanobis distance of 3.32, the 2016 drawing fell only in the 29th percentile with 
respect to distance from the mean.  So not only was the absolute divergence small, it was also small 
relative to the total set of simulations. 
 
Chart 3 shows a histogram of Mahalanobis distance for each of our 100,000 simulations.  In red we’ve 
labeled where the realized drawing would fall.  In total, the 2016 drawing was nothing special.  If 
anything, the drawing was noteworthy for actually being “less unusual” than expected. 

                                                   
7 Mahalanobis's definition was prompted by the problem of identifying the similarities of skulls based on 
measurements in 1927. 
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Chart 3: The Mahalanobis distance of 100,000 simulated trials 
 
Conclusion 
 
In this section, we examined the expected accuracy obtained by running 100,000 simulations.  When 
compared to the total number of possible outcomes, 100,000 simulations is at least 6 orders of 
magnitude too low.  However, by using the Central Limit Theorem, we saw that 100,000 was adequate 
to compute selection odds to one decimal place of accuracy with 95% confidence.  However, in order to 
achieve three decimal places of accuracy (which is what the race organizers currently report), over 2.6 
billion simulations would need to be run.  This computational cost, coupled with the fact that these odds 
are only meant to serve as a rough guide, suggests that limiting the reported odds to one decimal place 
is both more efficient and more accurate.  On the other hand, as the next section will demonstrate, it is 
possible to compute the odds of selection directly with complete accuracy, rendering the entire 
simulation approach unnecessary.  Lastly, we demonstrated a way of evaluating how “unusual” a given 
drawing was and showed that the 2016 drawing was quite ordinary. 
 

3. Quantification of Selection Odds 
  
In order to compute the odds of being selected for a given number of tickets, we need not quantify the 
entire distribution of possible outcomes (which the Monte Carlo method approximates).  Rather, we 
need only compute the expected value8 of the number of applicants selected from each category.  By 
working only with expected value, we can simplify the calculations and render Monte Carlo simulations 
unnecessary. 
 
Since we are concerned only with the expected number of applicants drawn in each category, we can 
consider each round of the lottery to draw a fraction of runners from each category, even though in 
reality only a single runner from a single category will be drawn each round.  Likewise, in each round an 
expected number of “dead” tickets will be removed from the hat.  We will then iterate through each of 
the 270 rounds, updating our expected odds of selection with each round. 
 

                                                   
8 From Wikipedia: the expected value of a random variable is intuitively the long-run average value of repetitions 
of the experiment it represents. For example, the expected value of a six-sided die roll is 3.5 because, roughly 
speaking, the average of an extremely large number of die rolls is practically always nearly equal to 3.5. 
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The Algorithm 
 

First, some terminology.  Let 𝑋𝑘 be a random variable representing the category of the entrant selected 

in the 𝑘𝑡ℎ round.  Let 𝐴𝑖,𝑘 be the number of applicants remaining in the 𝑖𝑡ℎ category after the 𝑘𝑡ℎ round.  

Let 𝑁𝑖 be the number of tickets for each runner in the 𝑖𝑡ℎ category.  (Note that 𝑁𝑖 does not change by 

round.)  For example, 𝑁1 = 1 and 𝑁7 = 64. 
 

Let 𝑇𝑖,𝑘 be the total number of tickets remaining in the 𝑖𝑡ℎ category at the start of the 𝑘𝑡ℎ round.  In other 

words, 
 

𝑇𝑖,𝑘 = 𝐴𝑖,𝑘 ∙ 𝑁𝑖 . 
 

 (Thus, 𝑇𝑖,0 is the initial number of tickets in the 𝑖𝑡ℎ category.)  The probability of choosing a ticket from 

the 𝑖𝑡ℎ category with the first draw is then 
 

𝑃(𝑋1 = 𝑖) =
𝑇𝑖,0

∑ 𝑇𝑗,0𝑗
 , 

 
where the denominator ranges across all j categories. 
 

Let 𝑆𝑖,𝑘 be the number of applicants drawn from the 𝑖𝑡ℎ category in the 𝑘𝑡ℎ round.  Then the expected 

number of applicants drawn is simply the probability of selecting that category.  In other words, 
 

𝐸[𝑆𝑖,𝑘] = 𝑃(𝑋𝑘 = 𝑖). 
 
Again, since we are computing the expected number of applicants selected, these values need not be 
whole numbers.  Table 4 shows the probabilities by category. 
 

Category: 

𝒊 

Entrants 
Remaining: 

𝑨𝒊,𝟎 

Tickets per 
Runner: 

𝑵𝒊 

Tickets 
Remaining: 

𝑻𝒊,𝟎 

Category 
Probability: 

𝑷(𝑿𝟏 = 𝒊) 

Number 
Selected: 

𝑬[𝑺𝒊,𝟏] 

1 2,233 1 2,233 26.91% 0.269 

2 639 2 1,278 15.40% 0.154 

3 377 4 1,508 18.17% 0.182 

4 171 8 1,368 16.58% 0.166 

5 71 16 1,136 13.69% 0.137 

6 14 32 448 5.40% 0.054 

7 5 64 320 3.86% 0.039 

 3,511  8,299 100.00% 1.000 

 
Table 4: First ticket probability by category 

 
From Table 4, we can see that there is a 26.9% chance that the first ticket is drawn a first-year 
applicant.  Likewise, there is a 3.9% chance that a seventh-year applicant is the first to be drawn.  Note 
that since we are concerned only with the expected number of applicants selected, the fact that 𝑆𝑖,1 is 

not a whole number is reasonable.  Lastly, we can see that ∑ 𝑆𝑗,1𝑗  is precisely 1, meaning that we’ve 

fully allocated our first selection across the seven categories. 
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So far, the odds have been computed in a straightforward manner.  What makes the calculation of odds 
in subsequent rounds non-trivial is the removal of “dead” tickets generated with each selection.  In 
particular, the total number of remaining tickets (𝑇𝑖,𝑘) will change depending on which category of 

applicant is selected in each round. 
 
Updating the Odds 
 
To compute the updated odds for the second draw, we must update the number of remaining tickets for 
each category.  We know the expected number of runners drawn in each category in the first round 

(𝐸[𝑆𝑖,1]), and the number of live tickets for runners in each category (𝑁𝑖).  Thus, we can update the 

number of entrants remaining in the 𝑖𝑡ℎ category after the 𝑘𝑡ℎ round as follows: 
 

𝐴𝑖,1 = 𝐴𝑖,0 − 𝐸[𝑆𝑖,1]. 

 

Lastly, we can update the tickets remaining in the 𝑖𝑡ℎ category after the 𝑘𝑡ℎ round as follows: 
 

𝑇𝑖,1 = 𝐴𝑖,1 ∙ 𝑁𝑖 . 
 
We can then compute the expected reduction in ticket count by category after the first draw. 
 
 

Category: 

𝒊 

Entrants 
Remaining: 

𝑨𝒊,𝟏 

Tickets per 
Runner: 

𝑵𝒊 

Tickets 
Remaining: 

𝑻𝒊,𝟏 

Category 
Probability: 

𝑷(𝑿𝟐 = 𝒊) 

Number 
Selected: 

𝑬[𝑺𝒊,𝟐] 

1 2,232.7 1 2,232.7 26.93% 0.269 

2 638.8 2 1,277.7 15.41% 0.154 

3 376.8 4 1,507.3 18.18% 0.182 

4 171.8 8 1,374.7 16.58% 0.166 

5 70.9 16 1,133.8 13.68% 0.137 

6 13.9 32 446.3 5.38% 0.054 

7 5.0 64 317.5 3.83% 0.038 

 3510.0  8,290.0 100.00% 1.000 

 
Table 5: Updated odds for second drawing 

 
By comparing Table 4 and Table 5, we can see several interesting things.  First, the probability of 
selecting a first-year applicant is higher in the second round than the first round.  This is reasonable, 
since each first-year applicant has just a single ticket in the lottery and the total number of tickets left in 
the hat has decreased after the first draw.  However, the odds of selecting a seventh-year applicant is 
actually lower in the second round than the first round.  This is due to the fact that almost 28% of the 
tickets expected to be removed from the hat came from seventh-year applicants.  While the total hat 
was reduced by about 0.1%, the seventh-year had was reduced by about 0.7%.  Therefore, the 
seventh-year odds actually declined.  
 
Now that we’ve computed the expected number of applicants drawn from each category in the second 
round, we can add this to our expected number from the first round and arrive at an aggregate count 
after two rounds.  In this way, we can iterate for a full 270 rounds and compute the precise expectation 
by category. 
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Let 𝑆𝑖 be the total number of applicants drawn from the 𝑖𝑡ℎ category after all 270 of the lottery.  In other 
words, 
 

𝑆𝑖 = ∑ 𝑆𝑖,𝑘

270

𝑘=1

. 

 
Then 
 

𝐸[𝑆𝑖] = ∑ 𝐸[𝑆𝑖,𝑘]

270

𝑘=1

. 

 
Once we have our expected number of selections by category, we can easily compute the likelihood of 
any particular runner being selected from that category.  Let 𝑃𝑖 be the probability of a runner from the 

𝑖𝑡ℎ category being selected in the lottery at any point.  Then 
 

𝑃𝑖 =
𝐸[𝑆𝑖]

𝐴𝑖,0
. 

 

In other words, once we know the expected number of applicants drawn from the 𝑖𝑡ℎ category, we can 
divide by the total number of applicants in that category to arrive at our final probability of being 
selected. 
 
Precise Results 
 
Given the above algorithm, the precise probability of selection can be computed, without any need for 
Monte Carlo simulation.  Appendix C contains R code to quickly compute the results in the case of the 
2015 Western States lottery.  Table 6 summarizes the results. 
 

Category: 

𝒊 

Total 
Entrants: 

𝑨𝒊,𝟎 

Tickets per 
Runner: 

𝑵𝒊 

Probability 
of Selection: 

𝑷𝒊 

Number 
Selected: 

𝑬[𝑺𝒊] 

1 2,233 1 3.656% 81.6 

2 639 2 7.179% 45.9 

3 377 4 13.845% 52.2 

4 171 8 25.779% 44.1 

5 71 16 44.931% 31.9 

6 14 32 69.714% 9.8 

7 5 64 90.876% 4.5 

 3,511   270.0 

 
Table 6: Precise odds of selection 

 
By comparing the precise results in Table 6 with the simulated results in Table 1, we can see that the 
expected number of runners taken in each category matches exactly to within one decimal place.  
However, the odds of selection in the simulated results (shown to three decimal places) differ slightly 
from the true odds computed above.  The odds for the fifth-year applicants are slightly overstated and 
the odds for the sixth- and seventh-year applicants are slightly understated.  However, none of these 
discrepancies are significant. 
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Chart 4: Category selection odds by round 
 

Chart 4 shows the probability of selecting an applicant from each category as the lottery progresses.  
We can see that the odds of selecting a first year applicant steadily rise from about 26.9% in the first 
round to over 33% in the final round.  Likewise, the chances of selecting second- and third-year 
applicants also rises throughout the lottery.  On the other hand, the chances of selecting a seventh-year 
applicant decline from about 3.9% in the first round to just 0.5% in the final round.  The odds for fourth-, 
fifth- and sixth-year applicants also fall as the lottery progresses. 
 
Because of these shifting odds, the early rounds will see a higher proportion of senior applicants 
selected than the later rounds.  For instance, in Table 6 we saw that 4.5 seventh-year applicants are 
expected to be selected in total.  However, we expect to see 50% of these selections happen by round 
75 (28% of the way through the lottery) and 75% of these selections by round 137 (51% of the way 
through).  In summary, if you have 16 or more tickets in the lottery and plan to attend the drawing in 
person, don’t arrive late: if you’re going to be selected it will probably happen early. 
 
Conclusion 
 
This section has described an algorithm for computing the precise odds of selection without the use of 
random simulation.  With this procedure in hand, there is no compelling reason for the race organizers 
to continue computing odds via Monte Carlo methods.  Using this method will improve the Western 
States lottery experience in several ways.  First, the accuracy of the lottery odds will increase, 
particularly for those runners with the most tickets in the hat.  Second, the calculation of odds is now a 
deterministic process which is no longer subject to elements of random chance.  While these random 
fluctuations are “smoothed out” by running a sufficient number of simulations, we saw in Section 2 that 
100,000 simulations was an insufficient number to achieve our desired level of accuracy.  Third, the 
running time of this procedure is significantly less than the simulated approach.  For example, on an 
average PC, a simulation of 100,000 trials took about five and a half minutes to run.  The deterministic 
procedure took one tenth of a second.  That’s five minutes the race organizers could have spent on 
more important aspects of the race. 
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4. Quantification of Draw Counts 
 
Referring again to Table 1, we see that the race organizers report the following statistics from the 
simulation: 
 

Average number of draws required: 303.1 
Minimum number of draws required: 279 
Maximum number of draws required: 336 

 
One may ask why these statistics are relevant to the entrants in the lottery.  While they do not impact 
the odds of any runner being selected, it’s possible that the race organizers wish to gauge the amount 
of time the drawing will take, since it is done before a live audience and streamed online in real time.  
Thus, understanding how often a ticket belonging to a previously-selected applicant will be drawn may 
help for planning purposes. 
 
It is important to note that these statistics merely describe the set of 100,000 observations generated 
during the Monte Carlo simulation run by the race organizers.  They do not necessarily describe the 
“true” underlying distribution of potential lottery outcomes.  (This is particularly acute in the case of 
statistics such as minimum and maximum which are sensitive to just a single extreme observation.) 
This section will examine what the “true” minimum, maximum and average number of draws are and 
how likely we are to observe such an outcome. 
 
Minimum Number of Draws 
 
Based on the 100,000 simulations run by the race organizers, the reported “minimum number of draws” 
was 279.  However, we know a priori that this is not the true minimum required.  In fact, we can easily 
construct an outcome which requires just 270 draws: every ticket drawn comes from the first-year 
applicant category.  While this is unlikely, it is by no means impossible.  The fact that the reported 
“minimum number of draws” was not precisely 270 simply indicates that not enough simulations were 
run.  As the number of simulations goes to infinity, the likelihood of observing a lottery with only 270 

required draws becomes a certainty.  In other words, let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) be a random sample of size 
𝑛 from the distribution describing the total number of tickets drawn in each simulation.  Then, 
 

lim
𝑛→∞

𝑃(min{𝑋} = 270) = 1. 

 
How likely are we to observe a drawing which requires only 270 draws?  We can compute this if we 
keep track of the number of “dead” tickets in the hat after each round.  We can then compute the 
probability of avoiding a “dead” ticket in all 270 rounds. 
 
Chart 5 shows the declining chances of escaping without a duplicate ticket through each round.  We 
see that by round 39, the likelihood of avoiding duplicates has already dropped below 50%.  By round 
70, there is only a 10% chance that we’ve avoided duplicates.  By the 100th round, there is only a 1% 
chance we have not yet drawn a duplicate. 
 
In total, the chances of drawing 270 unique names in 270 attempts is about one in 32,504,169,501,623 
trials.  Thus, if we ran about 32.5 trillion simulations, we should expect to see an instance where only 
270 drawings were required. 
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Chart 5: Odds of escaping a duplicate draw 
 
Maximum Number of Draws 
 
Based on the 100,000 simulations run by the race organizers, the reported “maximum number of 
draws” was 336.  However, much like the minimum number of draws, we know a priori that 336 is not 
the true maximum of the distribution.  It simply happened that 336 was the maximum number observed 
during a particular simulation of 100,000 drawings. 
 
We can easily construct a drawing which requires the maximum number of draws.  Simply order the 
applicants in decreasing order by ticket count.  (Ties can be broken in any manner desired.)  Then draw 
the tickets in that order.  For example, the first ticket drawn will be from a seventh-year applicant (who 
has 64 tickets in the hat).  The next 63 tickets will also be from this same applicant (and will be 
removed after each draw).  The second name will be drawn with the 65th ticket and will be from another 
seventh-year runner.  Likewise, the following 63 tickets will be duplicates from this runner.  We continue 
in this manner until all seventh-year applicants are selected.  We then repeat the process with sixth-
year applicants, and so on. 
 

Category Entrants 
Tickets per 

Runner 
Number 
Selected 

Number of 
Draws 

7 5 64 5 320 

6 14 32 14 448 

5 71 16 71 1,136 

4 171 8 171 1,368 

3 377 4 9 33 

2 639 2 0 0 

1 2,233 1 0 0 

 3,510  270 3,305 

 
Table 7: Maximum number of draws required 

 
How many draws will be required before we fill the 270 slots for the race?  Table 7 enumerates the 
3,305 draws required given the ordering described above. 

 
Why did the race organizers report a maximum of only 336 when the true maximum is nearly ten times 
higher?  Observing a drawing which requires 3,305 draws is extremely rare and simply would not be 
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expected to occur using only 100,00 simulations.  However, as the number of simulations goes to 
infinity, the likelihood of observing a drawing requiring 3,305 draws becomes a certainty. 
 
The likelihood of observing a drawing requiring 3,305 tickets can be computed as follows.  We need not 
pick the runners in the exact order described above (though that will certainly work).  Rather, we need 
only pick all 320 seventh-year tickets, all 448 sixth-year tickets, all 1,136 fifth-year tickets and all 1,368 
fourth-year tickets among the first 3,305 draws.  Further, we know we must draw all 4 tickets for 8 of the 
377 third-year runners.  Our 3,305th and final draw can be from any remaining runner. 
 
The number of possible ordered draws of 3,304 tickets from a pool of 8,299 is: 
 

8299!

4995!
≈ 1012,615 

 
The number of ordered draws which use all of the seventh-, sixth-, fifth- and fourth-year applicants plus 
8 of the 377 third-year applicants is: 
 

3304!

(377
8

)
≈ 1010,178 

 
Thus, the probability of drawing the maximum number of tickets to get 270 unique names is9: 
 

3304!

(377
8

)
8299!
4995!

⁄ ≈ 10−2,437 

 
We could run simulations until the end of time and likely never observe an instance of a 3,305-ticket 
draw.  However, in theory given enough simulations, this will occur with certainty. 
 
Average Number of Draws 
 
Computing the expected number of duplicate draws is more complicated.  However, we can modify our 
algorithm for determining the expected number of selections by category in order to compute the 
expected number of duplicate draws. 
 
First, we need a method of computing the expected number of duplicates drawn at a given point in the 

lottery.  Let 𝑇𝑘 be the total number of tickets left in the hat at the start of the 𝑘𝑡ℎ round.  Some portion of 
these tickets will be “dead”, in the sense that another ticket for that particular runner was previously 
drawn.  Let 𝐷𝑘 be the number of “dead” tickets in the hat after 𝑘 draws.  Let 𝑁𝑘 be the number of 

duplicate tickets drawn in the 𝑘𝑡ℎ round.  
 
For example, at the start of the lottery, 𝑇1 is the total number of tickets in the hat and 𝐷1 = 0.  Say a 
seventh-year applicant is selected with the first draw.  Then 𝑇2 = 𝑇1 − 1 and 𝐷2 = 63. 
 

Let 𝑋𝑘 be a random variable measuring the number of consecutive duplicates drawn to start the 𝑘𝑡ℎ 

round.  Then the probability of selecting exactly 𝑛 duplicates followed by a non-duplicate is 

                                                   
9 This is somewhat overstating the case.  This calculation assumes that 3,304 tickets will be drawn and considers 
the likelihood that they are all of a particular type.  However, in practice the lottery stops once 270 names have 
been selected.  Thus, this calculation is counting many instances which would never actually occur. 
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𝑃(𝑋𝑘 = 𝑛) = (∏
𝐷𝑘 − 𝑖

𝑇𝑘 − 𝐷𝑘

𝑛

𝑖=1

) ∙
𝑇𝑘 − 𝐷𝑘

𝑇𝑘 − 𝑛
 

 

The expected number of consecutive duplicate tickets drawn in the 𝑘𝑡ℎ round is 
 

𝐸[𝑁𝑘] = ∏ 𝑛 ∙ 𝑃(𝑋𝑘 = 𝑛)

𝐷𝑘

𝑛=1

 

 
We can then update 𝑇𝑘 and 𝐷𝑘 as follows: 
 

𝑇𝑘+1 = 𝑇𝑘 − 1 − 𝐸[𝑁𝑘] 
 

𝐷𝑘+1 = 𝐷𝑘 − 𝐸[𝑁𝑘] + 𝑉𝑘, 
 

where 𝑉𝑘 is the expected number of new duplicates generated in drawing 𝑘 (as described in Section 3). 
 
Thus, as the lottery proceeds according to the algorithm described in Section 3, we must keep track of 
the total number of tickets left in the hat (𝑇𝑘), the total number of dead tickets in the hat (𝐷𝑘) and the 

cumulative sum of the expected number of duplicates drawn (𝐸[𝑁𝑘]). 
 
Using the R code provided in Appendix D, we compute the total number of duplicates as 33.05192.  
Thus, in total, we expect the Western States Lottery to require 303.05192 draws to choose the 270 
entrants.  To one decimal place, this matches the simulated result exactly. 
 
Chart 6 shows the cumulative expected number of duplicates by round.  We can see that the likelihood 
of drawing a duplicate increases and in fact accelerates as the lottery progresses.  Near the end of the 
270-round lottery, we expect a duplicate ticket to be drawn about once every four rounds. 
 

 
 

Chart 6: Expected number of duplicates by round 
 
Conclusion 
 
This section demonstrated several things.  First, we showed what the true minimum and maximum 
required number of draws was and how likely we were to observe such outcomes.  We also computed 
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the expected number of draws to fill all 270 slots in the race.  Second, we noted that, in general, 
describing a distribution using its maximum and minimum is not very useful.  The minimum and 
maximum are each determined by just one extreme outcome, no matter how unlikely that outcome may 
be.  If the race organizers wish to report the likely range of drawings required, a better option would be 
to use percentiles.  For example, by removing the 5% of extreme cases on each end of the distribution, 
we could report that 90% of simulations required between 295 and 312 drawings.  Third, we showed 
how the number of expected duplicates grows by round.  This information could be useful when 
planning the pacing of the live lottery drawing.  For instance, we can see that drawing the last 50 
names will take approximately 20% longer than drawing the first 50 names.   
 

4. Effect of Ticket Scaling on Field Composition 

 
It is clear that the number of Western States applicants far exceeds the number of available spots and 
some method must be used to determine which runners will win the coveted entries.  A reasonable 
question to ask is: why use a lottery at all?  Many organizations facing a similar problem simply use a 
first-in-first-out queue.  (For example, many NFL teams use this method for allocating season ticket 
packages.  The waiting list for Pittsburg Steelers season tickets is currently 88,000 people long and it 
will take an estimated 50 years to reach the front.)  Arguably, this system is the “fairest” because no 
one can “cut the line” ahead of someone who has been waiting longer.  There is no random component 
deciding who wins and who doesn’t.  Everyone knows where they stand at all times.  One downside of 
such a system is the fact that someone joining the back of the line today may have little hope of 
reaching the front in a reasonable amount of time (as in the case of a new Steelers fan). 
 
On the other hand, a lottery system allows a portion of the applicants to “cut the line” and win a entry 
ahead of those who have waited in line longer.  While this is not “fair” to those being cut, it does have 
the advantage that it provides every entrant, no matter how low on the list, some hope that they may be 
selected.  This keeps more potential applicants engaged and interested in a race like Western States.  
This in turn keeps sponsors interested and keeps demand high for future years. 
 
Therefore, it is crucial that the Western States race organizers strike a balance between a “fair” system 
that is determined solely by one’s place in line and a “random” system which provides hope to every 
runner that they may be selected in the upcoming drawing. 
 
Different Scaling Factors 
 
The Western States race organizers have chosen to use the “2^(n-1)” system.  But why not “3^(n-1)” or 
“10^(n-1)”?  For that matter, why not “2.5^(n-1)”.  This section will examine the impact of using different 
scaling factors on the composition of the field selected. 
 
Chart 7 shows the number of runners selected from each category for a given ticket scaling factor.  The 
counts at a scale of 2 are those we calculated in Section 3 above.  You can see that as the scale 
increases, the composition shifts more and more towards the more seasoned applicants at the expense 
of the newer applicants.  In other words, there is less “cutting” the line. 
 
Essentially, the scaling factor controls the balance between a completely random drawing and a purely 
first-in-first-out queue.  For example, a scaling factor of 1.0 awards each applicant with a single ticket 
and thereby gives no preference to more senior applicants.  On the other hand, as the scaling factor 
grows to infinity, so much weight is given to seniority that the drawing becomes a simple first-in-first-out 
queue like that for Steelers season tickets.  
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Chart 7: Expected number of applicants selected using different ticket scales 
 
Disappointment and Surprise Levels 
 
We can think of two competing forces at work: surprise and disappointment.  First, we will define a 
“surprise” metric.  To some extent, every runner selected will feel some level of surprise at their good 
fortune.  However, not all applicants will be equally surprised.  Let’s say that an applicant’s surprise 
level is inversely proportional to the number of tickets they had in the had.  Thus, using a scale factor of 
2, a first year applicant will be twice as surprised as a second-year applicant at being selected.  
Likewise, they will be 64 times more surprised than a seventh-year applicant.  Applicants who are not 
selected will feel no surprise. 
 
Next,  we’ll define an “disappointment” metric.  This is the disappointment felt at not being selected.  
Let’s say that an applicant’s disappointment level is proportional to the number of tickets they had in the 
hat.  Again, using a scale factor of 2, a seventh-year applicant who is not selected will be twice as 
disappointed as a sixth-year applicant and 64 times as disappointed as a first-year applicant.   
Applicants who are selected will feel no disappointment. 
 
For a given ticket scaling level, we can then measure the total amount of disappointment and surprise 
generated across the entire pool of applicants.  However, in order to compare across different scale 
factors, we shall normalize the surprise and disappointment levels by the total number of tickets in the 
hat for a given drawing. 
 

Let 𝑆𝑖 be the number of applicants selected from the 𝑖𝑡ℎ category, let 𝐴𝑖 be the total number of 

applicants from the 𝑖𝑡ℎ category and let 𝑧 be the scale factor.  Then, 
 

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝑧) =
∑ (𝑆𝑖 ∙ 𝑧𝑘−𝑖+1)𝑘

𝑖=1

∑ (𝐴𝑖 ∙ 𝑧𝑖)𝑘
𝑖=1

 

 

𝐷𝑖𝑠𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑚𝑒𝑛𝑡(𝑧) =
∑ ((𝐴𝑖 − 𝑆𝑖) ∙ 𝑧𝑖)𝑘

𝑖=1

∑ (𝐴𝑖 ∙ 𝑧𝑖)𝑘
𝑖=1
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Chart 8 shows the surprise and disappointment levels for varying ticket scales between 1 and 5.  As 
you can see, at a scale factor of 1.0 there is very little surprise since with equal ticket counts no one 
can be surprised that they “beat the odds” and were chosen ahead of someone with more tickets.  On 
the other hand, there is a high degree of disappointment since the losers lost to people who had the 
same number of tickets and yet won.  
 

 
 

Chart 8: Relative surprise and disappointment levels caused by different ticket scaling factors 
 
As we increase the scale factor above one, we begin giving preference to more senior applicants.  The 
disappointment level decreases (since fewer senior applicants are being cut in line) and the surprise 
level increases (as the junior applicants who are selected feel that they “beat the odds” to be selected).  
At a scale factor of about 1.8, the total disappointment level equals the total surprise level.  At scale 
factors above this point, the surprise level exceeds the disappointment level. 
 
The total surprise level peaks around 3.5.  Above this scale factor, the lottery resembles more and 
more closely a first-in-first-out queue and there is less and less surprise available.  Chart 9 shows the 
net happiness level (surprise minus disappointment).  Total happiness is maximized at a scale factor of 
about 4.0.  We again see that we’ve balanced surprise and disappointment at about 1.8. 
 
Fractional Scales 
 
We saw that a scale factor of 1.8 seems to be optimal.  However, since the lottery is conducted in-
person using physical slips of paper in an urn, fractional scale factors are not practical.  (In particular, 
the slips would need to be weighted in some manner, which is likely infeasible.)  However, should the 
race organizers migrate away from the physical drawing to an electronic drawing, the use of a fractional 
scale factor would pose no theoretical issues. 
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Chart 9: Aggregate happiness level by ticket scaling factor 
 
Conclusion 
 
In this section, we demonstrated the impact of changing the number of tickets awarded to lottery losers 
in subsequent years.  We saw that as we increase the number of tickets, the lottery becomes less 
random and more like a simple waitlist.  We saw just one way to define the “surprise” and 
“disappointment” caused by a particular choice of scale factor.  Using this metric, it turns out that the 
current scale factor of two does a good job balancing total surprise and disappointment.  However, 
maximum total happiness (defined as surprise minus anger) would actually be achieved at a scale 
factor near four.  Above this level, the total happiness actually declines.  We also noted that as long as 
the lottery is conducted manually, a fractional scale factor is not practical.  For these reasons it appears 
that the current scale factor of two is actually an excellent choice.   
 

5. Expected Time to Selection 
 

It is clear that one’s odds of being selected in the Western States lottery as a first-year applicant are not 
good.  However, under the “2^(n-1)” system, it would seem that those odds are bound to improve with 
each year.  Therefore, a natural question to ask is: how long would a new applicant expect to wait 
before being selected? 
 
A Naïve Approach 
 
One way to answer this question is to look at those selected and compute the average number of years 

those applicants have spent in the lottery.  In other words, we can compute the average waiting time �̅� 
as follows: 
 

�̅� =
∑(𝑖 ∙ 𝐸[𝑆𝑖])

∑ 𝐸[𝑆𝑖]
 

 

Given the values of 𝐸[𝑆𝑖] found in Table 6, we can compute the average wait time of those runners 
selected in the 2016 Western States lottery as almost exactly 2.8.  Naively, one may therefore conclude 
that it will only take only 2.8 years in the lottery to be selected. 
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However, this is misleading.  To see why, consider the following analogy to the Powerball lottery10. We 
may ask, How many tickets does one need to buy, on average, to win the jackpot?  Let’s say in a 
recent drawing there were two winners: one bought 10 tickets and the other bought 30 tickets.  Thus, 
on average, the lottery winners bought 20 tickets each.  The erronious conclusion is that one should 
expect to win the jackpot after buying just 20 tickets.  After all, the winners really did win with just 20 
tickets, on average.  But of course this ignores the millions of people who did not win.  The winners 
didn’t win because they bought 20 tickets; they won because they were lucky.  The same principal 
applies to the Western States lottery: if we consider only the waiting time of the winners, we ignore the 
waiting time of the vast majority of applicants who were not winners (and by definition have longer 
waiting times). 
 
Estimating Growth of Applicants 
 
In order to properly compute the expected waiting time for a given runner, we must compute their odds 
of selection each year into the future.  Given those odds, we can then easily compute the expected 
number of years until selection.  For a given runner, we know that each year their number of tickets will 
double.  However, what we don’t know is how the rest of the field will evolve.  In other words, we don’t 
know how many new first-year applicants will appear.  We also don’t know how many previous 
applicants will continue to apply.  To estimate these values in future years, we will build a model of 
future growth based on recent trends. 
 
Table 8 shows the count of actual Western States lottery applications by year since 2000. 
 

 
 

Table 8: Western States lottery application counts by year 
 

There are a few things to note about this data.  First, there was no lottery held for the 2009 race (the 
2008 race was cancelled due to wildfire and all entries were carried over).  Second, the 2015 lottery 
was the first to use the “2^(n-1)” system.  Last, the qualifying standards were tighened with the 2015 
lottery, causing a slight dip in total applicants.  However, you can see that the application count has 
bounced back in 2016 despite the tougher standards. 
 

                                                   
10 Powerball is a multi-state lottery where players try to match five numbers between 1 and 69 and one 
number between 1 and 26.  The odds of getting an exact match are about 1 in 292 million.   



24 
 

Chart 10 shows the growth in total applicants through time.  The grey bars show the actual count of 
total applicants.  (To smooth impact of the change in qualification standards, the 2015 data has been 
replaced with a linear interpolation of the 2014 and 2016 data.)  In order to project future growth in 
application count, we have fit an exponential curve to the observed data.  This curve has the form 
 

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡𝑠(𝑡) = 381 ∙ 𝑒0.13𝑡, 
 
where t is the number of years since 1999.  This curve is shown in black in Chart 10. 
 

 
 

Chart 10: Projected growth in lottery applications 
 
Once we have estimated the growth in the total number of applicants, we must estimate how those 
applicants break down by category.  By looking at the actual entrants by category in the 2015 and 2016 
lotteries, we can see that the applicant count seems to decay exponentially by category.  Chart 11 
shows this data. 
 

 
 

Chart 11: Actual lottery applicant count by category with exponential decay estimate 
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The black lines in Chart 11 show our estimated breakdown by category.  This was computed as follows.  
Let’s say at some future year there are projected to be 𝑁 total applicants across 𝐶 categories.  Then 

our estimate for the number of applicants 𝐴𝑖 in category 𝑖 is given by: 
 

𝐴𝑖 =
𝑁

∑ 𝑒−𝑗𝐶
𝑗=1

∙
1

𝑒𝑖
 

 
Since the denominator of first term is simply a geometric series, we could rewrite it as: 
 

∑
1

𝑒𝑗
=

1 − (1
𝑒⁄ )𝐶+1

1 − 1
𝑒⁄

− 1 =
1

𝑒⁄ − (1
𝑒⁄ )

𝐶+1

1 − 1
𝑒⁄

.

𝐶

𝑗=1

 

 
As 𝐶 grows large, we see that 
 

lim
𝐶→∞

1
𝑒⁄ − (1

𝑒⁄ )
𝐶+1

1 − 1
𝑒⁄

=
1

𝑒⁄

1 − 1
𝑒⁄

=
1

𝑒 − 1
. 

 

Thus, we can approximate 𝐴𝑖 by: 
 

𝐴𝑖 =
𝑁(𝑒 − 1)

𝑒𝑖
≈ 1.71828 ∙

𝑁

𝑒𝑖
. 

 
Now that we can estimate the size and breakdown of the applicant pool each year into the future, we 
can run the algorithm described in Section 3 and compute projected future odds by applicant category. 
 
Chart 12 shows the projected odds for first-, second- and third-year applicants over the next ten years.  
As you can see, all three decline substantially.  The third-year odds (which are were 13.8% in 2016) 
decline to about 4% by 2026.  Likewise, the second-year odds decline from 7.2% in 2016 to less than 
2.5% in ten years.  The first-year odds, which were never good, decline to about 1%. 
 

 
 

Chart 12: Projected selection odds for first-, second- and third-year applicants 
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The reason for this behavior is clear: there is a small, fixed number of available slots each year, but an 
exponentially-growing number of applicants.  Even if each applicant doubles their tickets each year, the 
exponential growth of new applicants simply overwhelms the odds for everyone. 
 
New Applicant Wait Time 
 
Now that we have estimated the future odds for each category of applicant into the future, we are 
prepared to ask how long a new applicant will expect to wait before being selected.  To do this, we 
must compute the odds of being selected in each year (and no sooner). 
 

Let 𝑃𝑖,𝑘 be the probability of a 𝑖𝑡ℎ-year applicant being selected in the 𝑘𝑡ℎ year in the future.  Then the 

expected waiting time is given by 
 

𝑊𝑎𝑖𝑡 = ∑ 𝑘 ∙ (∏(1 − 𝑃𝑖,𝑖)

𝑘−1

𝑖=1

)

∞

𝑘=1

∙ 𝑃𝑘,𝑘 

 

In other words, for each year 𝑘 from 1 to infinity, we compute the probability of not being selected for 

𝑘 − 1 years and then being selected in the 𝑘𝑡ℎ year and weight this by 𝑘. 
 
When we perform this calculation using our estimates for the growth of the applicant pool, we see that 
the expected time to selection for a new applicant in 2017 is 5.25 years.  In other words, assuming the 
popularity of Western States continues to grow at an exponential rate into the foreseeable future, the 
average runner applying for the first time in 2017 will not be chosen until 2022. 
 
Chart 13 shows the odds of selection for a first-year applicant beginning in 2017.  The bad news is that 
the most likely year of selection is not until 2022.  The good news is that it’s almost certain that they will 
be selected by 2025. 
 

 
 

Chart 13: Projected selection year for first-year applicant beginning in 2017 
 
Self-Regulation of Wait Time 
 
The analysis above demonstrates that the expected wait time for new applicants will continue to grow 
into the forseeable future.  But can that wait time grow indefinitely or will it level off at some point?  On 
one hand, with an exponentially-growing applicant pool coupled with a fixed number of entries means 
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the wait time must grow indefinitely.  However, a more likely scenario is that a leveling-off will 
eventually occur due to applicant attrition.  Remaining in the lottery requires finishing at least one 
qualifying ultramarathon every year.  While every runner is different, there is certainly some limit to the 
number of consecutive years the average runner can run 100-mile ultramarathons.  For the sake of 
argument, let’s say this limit is ten years.  Thus, due to factors such as burnout, injury, or life changes, 
the average runner will simply choose (or be forced) to stop applying after about ten years.  The model 
described above captures this attrition as an exponential decay. 
 
This dynamic results in two important facts for the Western States race organizers.  One one hand, it 
keeps the expected wait time bounded by the length of the average applicant’s ultramarathon career.  
Unlike Pittsburgh Steelers season tickets, we’ll never see a Western States waiting time of 50 years.  
On the other hand, it means that most runners applying for the lottery will never actually run Western 
States in their lifetime.  The majority of applicants will be forced to drop out before ever being selected. 
 
Conclusion 
 
In this section we examined the impact of a growing applicant pool on the future odds of selection.  It’s 
a simple fact that with the applicant pool growing exponentially and the Western States field fixed at 
about 380 runners per year, the odds for everyone are bound to decline each year.  Extrapolating from 
recent growth patterns, we see that for a first-year applicant in the 2017 lottery the expected time until 
selection is about 5.25 years and possibly as many as 8 years.  Attrition within the applicant pool will 
likely serve to keep the expected wait time bounded.  However, it also means that most runners 
applying today will never actually be selected. 
 

6. Recommendations 

 
In the preceding sections we have analyzed several aspects of the Western States lottery.  Based on 
these findings, the following recommendations are offered to the race organizers. 
 

1. There is no need to use Monte Carlo simulation when computing the lottery odds.  By using the 
method described in Section 3, the odds can be computed directly and accurately. 

2. Reporting minimum and maximum number of draws is not particularly useful as a means of 
describing the range of possible outcomes, particularly for distributions with long, thin tails.  In 
such cases, a better method of describing the likelihood of extreme events is to report 
percentiles, say the 5th and 95th. 

3. The current scale factor of 2 does a good job balancing surprise and disappointment among the 
applicant pool as a whole.  This should be maintained. 

4. The exponentially-growing size of the applicant pool will contribute to declining odds across all 
categories of applicant.  Assuming recent trends continue, we will soon reach a point where 
most applicants in the lottery will never actually be selected.  Enhancing Western States as a 
“spectator sport” will be critical to keeping the interest of these runners and thereby maintaining 
the race’s position atop the ultramarathon world. 
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7. Appendix 
 
Appendix A 
 

In this section, we compute the number of distinct lottery outcomes where we distinguish runners only by 
their category.  For example, one outcome consists of 270 first-year applicants.  Another outcome 
consists of 369 first-year applicants and one second-year applicant.  Another outcome consists of 368 
first-year applicants and two second-year applicants, etc. 
 

We can accomplish this using generating functions.  Let 𝐺(𝑥) = ∑ 𝑝𝑘𝑥𝑘 where 𝑝𝑘 is the number of 

distinct outcomes in a lottery with 𝑘 rounds.  Thus, we seek to compute 𝑝270, which is the coefficient of 

𝑥270 in the following polynomial: 
 

𝐺(𝑥) = (1 + 𝑥 + ⋯ + 𝑥2233) ∙ (1 + 𝑥 + ⋯ + 𝑥639) ∙ (1 + 𝑥 + ⋯ + 𝑥377) ∙ 
(1 + 𝑥 + ⋯ + 𝑥171) ∙ (1 + 𝑥 + ⋯ + 𝑥71) ∙ (1 + 𝑥 + ⋯ + 𝑥14) ∙ (1 + 𝑥 + ⋯ + 𝑥5) 

 

=
1 − 𝑥2234

1 − 𝑥
∙

1 − 𝑥640

1 − 𝑥
∙

1 − 𝑥378

1 − 𝑥
∙

1 − 𝑥172

1 − 𝑥
∙

1 − 𝑥72

1 − 𝑥
∙

1 − 𝑥15

1 − 𝑥
∙

1 − 𝑥6

1 − 𝑥
 

 

= (1 − 𝑥2234)(1 − 𝑥640)(1 − 𝑥378)(1 − 𝑥172)(1 − 𝑥72)(1 − 𝑥15)(1 − 𝑥6) ∙
1

(1 − 𝑥)7
 

 
The final term can be written as a geometric series with coefficients computed from the generalized 
binomial theorem: 
 

1

(1 − 𝑥)7
= ∑ (

𝑘 + 6

𝑘
)

∞

𝑘=0

𝑥𝑘 = (
6

0
) + (

7

1
) 𝑥 + (

8

2
) 𝑥2 + ⋯ 

 

It turns out there are 16 different ways to combine terms to yield 𝑥270 (though we won’t enumerate them 

here).  This leads to the following expression for the coefficient of 𝑥270: 
 

(
276

6
) − (

270

6
) − (

261

6
) − (

204

6
) − (

104

6
) + (

255

6
) + (
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6
) + (
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6
) + 

 

(
98

6
) + (

89

6
) + (

31

6
) − (

183

6
) − (

83

6
) − (

26

6
) − (

17

6
) + (

11

6
) 

 
= 12,705,435,449. 
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Appendix B 
 
R code for simulating lottery results.  T 

applicants <- c( 2233, 639, 377, 171, 71, 14, 5 ) 

tickets.per.applicant <- 2 ^ ( seq_along( applicants ) - 1 ) 

race.capacity <- 270 

 

num.categories <- length( applicants ) 

num.trials <- 1000 

 

trials <- matrix( nrow = num.trials, ncol = num.categories ) 

 

for ( i in seq( num.trials ) ) { 

   

  people.drawn <- rep( 0, num.categories ) 

   

  for ( j in seq( race.capacity ) ) { 

    people.left <- applicants - people.drawn 

    tickets.left <- people.left * tickets.per.applicant 

     

    person.drawn <- sample( num.categories, 1, 

                            prob = tickets.left / sum( tickets.left ) ) 

     

    people.drawn[ person.drawn ] <- people.drawn[ person.drawn ] + 1 

  } 

   

  trials[ i, ] <- people.drawn 

} 

 

num.taken <- sapply( seq( num.categories ), function( n ) mean( trials[,n] ) ) 

                      

odds.of.selection <- num.taken / applicants 

                      

data.frame( category = seq( num.categories ), 

            odds = round( 100 * odds.of.selection, 3 ), 

            num.taken = round( num.taken, 1 ) ) 
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Appendix C 

 
R code for computing precise odds of selection in the 2015 Western States lottery. 

 
  

applicants <- c( 2233, 639, 377, 171, 71, 14, 5 ) 

tickets.per.applicant <- 2 ^ ( seq_along( applicants ) - 1 ) 

race.capacity <- 270 

num.categories <- length( applicants ) 

 

original.tickets <- applicants * tickets.per.applicant 

ticket.counts <- applicants * tickets.per.applicant 

 

for ( i in seq( race.capacity ) ) { 

   

  prob.of.selecting.category <- ticket.counts / sum( ticket.counts ) 

  exp.ticket.reduction <- prob.of.selecting.category * tickets.per.applicant 

  ticket.counts <- ticket.counts - exp.ticket.reduction 

} 

 

tickets.taken <- original.tickets - ticket.counts 

 

odds.of.selection <- tickets.taken / original.tickets 

 

num.people.taken <- odds.of.selection * applicants 

 

data.frame( category = seq( num.categories ), 

            odds = round( 100 * odds.of.selection, 3 ), 

            num.taken = round( num.people.taken, 1 ) ) 
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Appendix D 
 
R code for computing expected number of duplicate draws 

expected.duplicates <- function( num.dead, num.in.hat ) { 

   

  alive.remaining <- num.in.hat - num.dead 

  dead.remaining <- seq( num.dead, 0, -1 ) 

  ticket.counts <- seq( num.in.hat, num.in.hat - floor( num.dead ), -1 ) 

   

  dead.prob <- dead.remaining / ticket.counts 

  alive.prob <- alive.remaining / ( ticket.counts - 1 )  

   

  likelihoods <- cumprod( dead.prob ) * alive.prob 

   

  sum(likelihoods * seq_along( likelihoods ) ) 

} 

 

people <- c( 2233, 639, 377, 171, 71, 14, 5 ) 

weights <- 2 ^ ( seq_along( people ) - 1 ) 

race.capacity <- 270 

 

ticket.counts <- people * weights 

 

tickets.in.hat <- sum( ticket.counts ) 

dead.tickets <- 0 

total.dupes.drawn <- 0 

 

for ( i in seq( race.capacity ) ) { 

   

  dupes.drawn <- expected.duplicates( dead.tickets, tickets.in.hat ) 

  total.dupes.drawn <- total.dupes.drawn + dupes.drawn 

  dead.tickets <- dead.tickets - dupes.drawn 

   

  prob.of.category <- ticket.counts / sum( ticket.counts ) 

  exp.ticket.red <- prob.of.category * weights 

  ticket.counts <- ticket.counts - exp.ticket.red 

   

  newly.dead.tickets <- sum( exp.ticket.red - prob.of.category ) 

   

  tickets.in.hat <- tickets.in.hat - 1 

  dead.tickets <- dead.tickets + newly.dead.tickets 

} 

 

sprintf( "Total draws required: %.1f", race.capacity + total.dupes.drawn ) 


